你好,欢迎进入成公教育官网!

开创公考之路

Creating the Road of Public Entrance Examination

4006158848

客服服务时间:9:00-18:00

当前位置: 考试资料 > 备考必读 >

利用特值法巧解工程问题-2025国家公务员考试行测解题技巧

发布时间:2024-08-03

浏览次数:0

一、将各主体完工天数的最小公倍数设为工作总量
 
  【例1】一批零件若交由赵师傅单独加工,需要10天完成;若交由孙师傅单独加工,需要15天完成。两位师傅一起加工这些零件,需要(  )天完成。
 
  A.5
 
  B.6
 
  C.7
 
  D.8
 
  答案:B
 
  【解析】设零件总数为30,则赵师傅每天完成3,孙师傅每天完成2,两人一起加工需要30÷(3+2)=6天完成,选择B。
 
  二、将各主体的效率比直接设为效率
 
  【例2】甲、乙、丙三人共同完成一项工作需要6小时。如果甲与乙的效率比为1∶2,乙与丙的效率比为3∶4,则乙单独完成这项工作需要多少小时?
 
  A.10
 
  B.17
 
  C.24
 
  D.31
 
  答案:B
 
  【解析】由题可知,甲、乙、丙的工作效率之比为3∶6∶8,则可设甲、乙、丙的工作效率分别为3、6、8,故总工作量为(3+6+8)×6,因此乙单独完成这项工作需要(3+6+8)×6÷6=17小时。故本题选B。
 
  三、多个主体合作,且每个主体的工作效率一样时,设每个主体的工作效率为1
 
  【例3】某茶园需要在一定时间内完成采摘。前4天安排了20名采茶工,完成了五分之一的工作量。如果再用10天完成全部采摘,至少还需要增加(  )名采茶工。
 
  A.12
 
  B.11
 
  C.10
 
  D.9
 
  答案:A
 
  【解析】设一名采茶工一天的工作量为1,则前4天20名采茶工完成的工作量为4x20=80,占工作量的\\,则采摘茶叶的工作总量为\\,此时剩余工作量为\\,若在10天完成,则需要320÷10=32名采茶工,因此至少还需要增加32-20=12名采茶工。故本题选A。


4006158848

微信二维码